Processing math: 100%
Skip to main content

Exploring Digit Properties: Solving for Two-Digit Numbers

Mathematics often presents intriguing problems that involve the properties of digits within numbers. In this blog post, we'll explore a problem where we need to find all two-digit numbers \( N \) that satisfy a specific equation involving the product and sum of their digits. Let's dive into the details and solve this problem step-by-step.



Let P(n) and S(n) denote the product and sum, respectively, of the digits of a positive integer n. Determine all two-digit numbers N that satisfy the equation:

P(N)+2S(N)=N 

For example, P(23)=2×6 and S(23)=2+3=5. 

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.


Answer: `14, 36, 77`

Explanation: 

  •  Let N=10a+b, where a and b are the tens and units digits of N, respectively.
    Here, a and b are integers such that 1a9 and 0b9.
  • Then ,
    • The product of the digits P(N) is
      P(N)=ab
    • The sum of the digits S(N) is:
           S(N)=a+b
  • Then, the equation P(N)+2S(N)=N becomes
     ab+2(a+b)=10a+b
     ab+2a+2b=10a+b
     ab+2a+2b-b=10a
     ab+2b-b=10a-2a
     ab+b=8a
     b(a+1)=8a
b=8aa+1
  • For b to be an integer, 8aa+1 must be an integer.
    • Check values of a from 1 to 9 to find valid solutions:
    • a=1: b=811+1=4
    • a=2: b=822+1=163 (not an integer)
    • a=3: b=833+1=6
    • a=4: b=844+1=325 (not an integer)
    • a=5: b=855+1=406 (not an integer)
    • a=6: b=866+1=487 (not an integer)
    • a=7: b=877+1=7
    • a=8: b=888+1=649 (not an integer)
    • a=9: b=899+1=7.2 (not an integer)
  •    The valid pairs (a,b) are (1,4), (3,6), and (7,7).
  •    Therefore, the valid two-digit numbers N are

N=10a+b14,36,77 

Comments