Processing math: 100%
Skip to main content

Wi-fi Problem

 


Before Solve this problem, we have to understand some characteristics of odd functions.

Definition :Odd functions
A function f is said to be an odd function if -f(x)=f(-x), for all value of x.

Observations: The graph of an odd function will be symmetrical about the origin.

Example: f(x)=x3 is odd
proof: f(-x)=(-x)3=-(x3)=-f(x)


Observe that the graph of x3 function is symmetrical about the origin. Now Let's talk about the integrals of odd functions.

Theorem
Let  f  be an integrable function on some closed interval that is symmetric about zero. Let's call the interval [-a,a] for a>0. If f is odd function then,

a-af(x)dx=0

proof Let  f  be an integrable function on some closed interval that is symmetric about zero. Let's call the interval [-a,a] for a>0. Suppose that f is odd function.  Then, 

a-af(x)dx=0-af(x)dx+a0f(x)dx-------(1)

Before move on further,
Claim: 
0x=-af(x)dx=-ax=0f(x)dx
proof of claim
Since f is odd, f(-x)=-f(x) Then,

0x=-af(x)dx=-0x=af(-x)dx

Let u=x,du=dx, then,

-0x=-af(-x)dx=0u=af(u)du

Reversing the limits of integration inverts the result, so

0u=af(u)du=-au=0f(u)du

Thus,
0x=-af(x)dx= -0x=-af(-x)dx=0u=af(u)du=-au=0f(u)du=-ax=0f(x)dx
This proove the claim,
By (1),
a-af(x)dx=0-af(x)dx+a0f(x)dx 
a-af(x)dx=-a0f(x)dx+a0f(x)dx=0

Now let's move back to our problem. 


Integral =2-2(x3cos(x2)+12)4-x2dx
=2-2(x3cos(x2))4-x2dx+2-2124-x2dx

Let's call h(x)=x3cos(x2)4-x2. Then h(x) is odd. Because, h(-x)=(-x)3cos((-x)2)4-(-x)2=-x3cos(x2)4-x2=-h(x).
Then,
Integral =2-2(x3cos(x2))4-x2dx0+ 2-2124-x2dx
Integral =2-2124-x2dx
Integral =122-24-x2dx

Note that x2+y2=4 is circle centerd at (0,0) with radius 2.  Hence, 122-24-x2dx is area of semi circle with radius 2. Then, 


Integral =1212π(2)2dx=π=3.1415926535

Therefore answer,

Wi-Fi Password =31415926535
    








Comments