Skip to main content

Posts

Showing posts from March, 2023

Fermat’s Last Theorem: A Mathematical Mystery

Pierre de Fermat Fermat’s Last Theorem is one of the most famous and intriguing problems in the history of mathematics. It states as follows, Theorem (Fermat's Last Theorem ) No three positive integers `x, y,` and `z` can satisfy the equation `x^n + y^n = z^n` for any integer n greater than 2. For example, there are no positive integers x, y, and z such that `x^3 + y^3 = z^3` (the sum of two cubes is not a cube). This simple-looking equation has fascinated mathematicians for centuries. It was first stated by Pierre de Fermat, a French lawyer and amateur mathematician, around 1637 in the margin of a copy of Arithmetica by Diophantus of Alexandria, an ancient Greek algebra book. Fermat wrote: “It is impossible for a cube to be a sum of two cubes, a fourth power to be a sum of two fourth powers, or in general for any number that is a power greater than the second to be the sum of two like powers. I have discovered a truly remarkable proof [of this theorem], but this margin is too...

Mutilated Chessboard Puzzle (āˇ€ිāļšෘāļ­ි āˇ€ූ āļ ෙāˇƒ් āļ´ුāˇ€āļģු āļœැāļ§āļŊුāˇ€)

āˇƒාāļ¸āļą්‍āļē `8 \times 8` āļ ෙāˇƒ් āļ´ුāˇ€āļģුāˇ€āļš් āˇƒāļŊāļšāļą්āļą. āļ…āļ´ි āļ‘āļē āļ´āˇ„āļ­ āļ†āļšාāļģāļēāļ§ āˇ€ිāļšෘāļ­ි āļšāļģāļ¸ු āļģූāļ´āļē 1: āˇƒāļ¸්āļ¸āļ­ 8×8 āļ ෙāˇƒ් āļ´ුāˇ€āļģුāˇ€āļš් āˇƒāļ¸්āļ¸āļ­ 8×8 āļ ෙāˇƒ් āļ´ුāˇ€āļģුāˇ€āļš āˇ€āļģ්āļœ 62āļš් āļ‰āļ­ිāļģි āļšāļģāļ¸ිāļą් āˇ€ිāļšāļģ්āļĢ āļŊෙāˇƒ āļ´්‍āļģāļ­ිāˇ€ිāļģුāļ¯්āļ° āļšොāļą් āļ¯ෙāļšāļš් āļ‰āˇ€āļ­් āļšāļģ āļ‡āļ­ැāļēි āˇƒිāļ­āļ¸ු. (āļģූāļ´āļē 2 āļļāļŊāļą්āļą) āļ¸ෙāļ¸ āˇƒිāļēāļŊු āˇ€āļģ්āļœ āļ†āˇ€āļģāļĢāļē āˇ€āļą āļ´āļģිāļ¯ි 2×1 āļ´්‍āļģāļ¸ාāļĢāļēේ āļŠොāļ¸ිāļąෝ āļšැāļ§ 31āļš් āļ­ැāļļිāļē āˇ„ැāļšිāļ¯?  āļģූāļ´āļē 2: āˇ€ිāļšෘāļ­ි āˇ€ු āļ ෙāˇƒ් āļ´ුāˇ€āļģුāˇ€ āļģූāļ´āļē 3: āļšāˇ„ āˇ€āļģ්āļĢāļēෙāļą් 2×1 āļ´්‍āļģāļ¸ාāļĢāļēේ āļŠොāļ¸ිāļąෝ  āļšැāļ§ āļ¯āļš්āˇ€ා āļ‡āļ­. āļģූāļ´āļē 4: āˇ€ිāļšෘāļ­ි āˇ€ූ āļ ෙāˇƒ්āļļෝāļŠ් āļœැāļ§āļŊුāˇ€āļ§ āļ…āˇƒාāļģ්āļŽāļš āˇ€ිāˇƒāļŗුāļ¸: āļšොāļą් āļ¯ෙāļš (āļģāļ­ු āļšāļ­ිāļģ āļ¯ෙāļš) āļ¸ෙāļą්āļ¸ āļ¸āļ°්‍āļē āļ āļ­ුāļģāˇ්‍āļģ āļ¯ෙāļšāļš් āļ¯ (āļšāˇ„ āˇ€āļģ්āļĢ āļ´්‍āļģāˇ්āļąාāļģ්āļŽ āļ¯ෙāļš) āļ…āļąාāˇ€āļģāļĢ āˇ€ී āļ‡āļ­. . . . . . . . . . . . . . . . Show Answer āļ´ිāˇ…ිāļ­ුāļģ: āļ¸ෙāļ¸ āļ ෙāˇƒ් āļ´ුāˇ€āļģුāˇ€ේ 1×1 āļšොāļ§ු 62 āļš් āļ‡āļ­ි āļļāˇ€ āļąිāļģීāļš්āˇ‚āļĢāļē āļšāļŊ āˇ„ැāļš. āļ‘āļļැāˇ€ිāļą්, āļ´ුāˇ€āļģුāˇ€ āļ†āˇ€āļģāļĢāļē āļšිāļģීāļ¸ āˇƒāļŗāˇ„ා 2×1 āļŠොāļ¸ිāļąෝ 62/2=31 āļš් āļ…āˇ€āˇ්‍āļē āˇ€ේ. āļąāˇ€    āˇ€ිāļšෘāļ­ි āˇ€ූ  āļ ෙāˇƒ්  āļ´ුāˇ€āļģුāˇ€ේ āļšāˇ…ු āļšොāļ§ු 32 āļš් āļ…āļŠංāļœු āˇ€āļą āļ…āļ­āļģ āˇƒෑāļ¸ āļŠොāļ¸ිāļąෝ āļ‘āļšāļš්āļ¸ āļģāļ­ු āļšොāļ§ුāˇ€āļš් āˇƒāˇ„ āļšāˇ…ු āļšොāļ§ුāˇ€āļš් āļ†āˇ€āļģāļĢāļē āˇ€āļą āļļāˇ€ āļ¯ āļąිāļģීāļš්āˇ‚āļĢāļē āļšāļģāļą්āļą. (āļģූāļ´āļē 5 āļļāļŊāļą්āļą) āļģූāļ´āļē 5 āļ¸ෙāļē āˇ€ිāˇƒāļŗිāļ¸āļ§ Pigeonhole āļ¸ූāļŊāļ°āļģ්āļ¸āļē āļēොāļ¯ා āļœāļ­ āˇ„ැāļš. (Pigeonhole āļ¸ූāļŊāļ°āļģ්āļ¸āļē āļœැāļą āļ¸ීāļ§ āļ´ෙāļģ āļ´āļŊāˇ€ු āļŊිāļ´ිāļē ...

Pigeonhole Principle

The Pigeonhole Principle is a simple but powerful tool used in Discrete Mathematics and Combinatorics. It is also called the Dirichlet box principle (in honor of the German mathematician Dirichlet) or the Drawer Principle. The Pigeonhole principle states that if there are more pigeons than there are pigeonholes, there must be more than one pigeon in at least one pigeon hole. It may seem like a trivial statement, but the Pigeonhole Principle has applications in various fields, from computer science to cryptography.  To understand the Pigeonhole principle, consider a scenario where we have 4 pigeons and 3 pigeonholes. If we try to put each pigeon in a separate pigeon hole, we will get one pigeon hole with two pigeons in it. This is because there are more pigeons than pigeonholes.  Generally the Pigeonhole Principle can be stated as follows: Theorem 1: (Pigeonhole Principle) If n objects are placed into m containers (n>m), then at least one box must contain more than one obje...

Pigeonhole Principle (āļ´āļģāˇ€ි āļšූāļŠු āļ¸ූāļŊāļ°āļģ්āļ¸āļē)

 PIEGONHOLE PRINCIPLE (āļ´āļģāˇ€ි āļšූāļŠු āļ¸ූāļŊāļ°āļģ්āļ¸āļē) Pigeonhole āļ¸ූāļŊāļ°āļģ්āļ¸āļē āˇƒංāļēුāļš්āļ­ āˇ€ිāļ¯්‍āļēාāˇ€ේ (Discreate Mathematics) āˇƒāˇ„ āˇ€ිāˇ€ිāļš්āļ­ āļœāļĢිāļ­āļēේ (Combinatorics)  āļˇාāˇ€ිāļ­ා āˇ€āļą āˇƒāļģāļŊ āļąāļ¸ුāļ­් āļ´්‍āļģāļļāļŊ āļ¸ෙāˇ€āļŊāļ¸āļšි. āļ‘āļē Dirichlet box āļ¸ූāļŊāļ°āļģ්āļ¸āļē (āļĸāļģ්āļ¸ාāļąු āļœāļĢිāļ­āļĨāļē Dirichlet āļ§ āļœෞāļģāˇ€āļēāļš් āˇ€āˇāļēෙāļą්) āˇ„ෝ āļŊාāļ ්āļ ු āļ¸ූāļŊāļ°āļģ්āļ¸āļē (Drawer Principle) āļŊෙāˇƒāļ¯ āˇ„ැāļŗිāļą්āˇ€ේ. āļ´āļģෙāˇ€ි āļšූāļŠු āˇ€āļŊāļ§ āˇ€āļŠා āļ´āļģāˇ€ිāļēāļą් āˇ€ැāļŠි āļąāļ¸්, āļ…āˇ€āļ¸ āˇ€āˇāļēෙāļą් āļ‘āļš් āļ´āļģෙāˇ€ි āļšුāˇ„āļģāļēāļš āļ´āļģෙāˇ€ිāļēෙāļšුāļ§ āˇ€āļŠා āˇ€ැāļŠි āļœāļĢāļąāļš් āļ­ිāļļිāļē āļēුāļ­ු āļļāˇ€ āļ¸ූāļŊāļ°āļģ්āļ¸āļēේ āˇƒāļŗāˇ„āļą් āˇ€ේ. āļ‘āļē āˇƒුāˇ…ුāļ´āļ§ු āļ´්‍āļģāļšාāˇāļēāļš් āļŊෙāˇƒ āļ´ෙāļąෙāļąු āļ‡āļ­, āļąāļ¸ුāļ­් Pigeonhole āļ¸ූāļŊāļ°āļģ්āļ¸āļē āļ´āļģිāļœāļĢāļš āˇ€ිāļ¯්‍āļēාāˇ€ේ (Computer Science) āˇƒිāļ§ āļœුāļ´්āļ­āļšේāļ­āļąāļē (Cryptography)  āļ¯āļš්āˇ€ා āˇ€ිāˇ€ිāļ° āļš්āˇ‚ේāļ­්‍āļģāˇ€āļŊ āļēෙāļ¯ීāļ¸් (Applications) āļ‡āļ­. Pigeonhole  āļ¸ූāļŊāļ°āļģ්āļ¸āļē āļ­ේāļģුāļ¸් āļœැāļąීāļ¸āļ§, āļ…āļ´āļ§ āļ´āļģෙāˇ€ිāļēāļą් 4 āļš් āˇƒāˇ„ āļ´āļģෙāˇ€ි āļšූāļŠු 3 āļš් āļ‡āļ­ි āļ…āˇ€āˇƒ්āļŽාāˇ€āļš් āˇƒāļŊāļšා āļļāļŊāļą්āļą. āļ…āļ´ි āļ‘āļš් āļ‘āļš් āļ´āļģෙāˇ€ිāļēෙāļšු āˇ€ෙāļąāļ¸ āļ´āļģෙāˇ€ි āļšුāˇ„āļģāļēāļš āļ­ැāļļීāļ¸āļ§ āļ‹āļ­්āˇƒාāˇ„ āļšāˇ…āˇ„ොāļ­්, āļ…āļ´āļ§ āļ´āļģāˇ€ිāļēāļą් āļ¯ෙāļ¯ෙāļąෙāļšු āˇƒිāļ§ිāļą āļ‘āļš් āļ´āļģෙāˇ€ි āļšුāˇ„āļģāļēāļš් āļŊැāļļෙāļąු āļ‡āļ­. āļ¸ෙāļēāļ§ āˇ„ේāļ­ුāˇ€ āļ´āļģෙāˇ€ි āļšූāļŠු āˇ€āļŊāļ§ āˇ€āļŠා āļ´āļģāˇ€ිāļēāļą් āˇ€ැāļŠි āˇ€ීāļ¸āļēි.  āˇƒාāļ¸āļą්‍āļē āˇ€āˇāļēෙāļą් āļœāļ­් āļšāļŊ, Pigeonhole āļ¸ූāļŊāļ°āļģ්āļ¸āļē āļ´āˇ„āļ­ āļ´āļģිāļ¯ි āļ¯ැāļš්āˇ€ිāļē āˇ„ැāļšිāļē: Theorem 1: (Pigeonhole Principle...

āļ…āļˇිāļģāˇ„āˇƒ් āˇƒāˇ„ āļ†āļšāļģ්āˇ‚āļĢීāļē āˇƒංāļ›්‍āļēාāˇ€: `pi`

    āˇƒැāļ¸āļ§ āˇƒුāļˇ āļ´āļēි (`pi`) āļ¯ිāļąāļēāļš්.🎉đŸĨŗ āļ…āļ¯ āļ¸ාāļģ්āļ­ු 14. āļ…āļ¯ āļ´āļēි āļ¯ිāļąāļē āļŊෙāˇƒ āˇ„ැāļŗිāļą්āˇ€ේ. āļ‘āļē āļœāļĢිāļ­āļ¸āļē āļąිāļēāļ­āļē āˇ€āļą Ī€ (pi) āˇƒැāļ¸āļģීāļ¸āļ§ āļ¯ිāļąāļēāļš් āˇ€āļą āļļැāˇ€ිāļąි. āˇƒංāļ›්‍āļēාāļ­්āļ¸āļšāˇ€ 3/14 āļŊෙāˇƒ āļŊිāļēා āļ‡āļ­ි āļ¯ිāļąāļē āļ¸ෙāļē āļąිāļ¸āļš් āļąැāļ­ි āļ…ංāļšāļēේ āļ´āˇ…āļ¸ු āļ‰āļŊāļš්āļšāļ¸් āļ­ුāļąāļ§ āļœැāļŊāļ´ේ: 3.14 .āļ…āļ¯ āļ¸āļ§ āļšāļ­ා āļšිāļģීāļ¸āļ§ āļ…āˇ€āˇ්‍āļē āˇ€āļą්āļąේ āļœāļĢිāļ­āļēේ āˇ€āļŠාāļ­් āļ´්‍āļģāˇƒිāļ¯්āļ° āˇ„ා āļ†āļšāļģ්āˇ‚āļĢීāļē āˇƒංāļ›්‍āļēා āˇ€āļŊිāļą් āļ‘āļšāļš් āļœැāļą āļē: `\pi`. āļ”āļļ āļļොāˇ„ෝ āˇ€ිāļ§ `\pi` āļēāļąු āļ…ංāļš 3.14 āļŊෙāˇƒ āļ¯āļą්āļąා āļąāļ¸ුāļ­් āļ‘āļēāļ§ āˇ€āļŠා āļļොāˇ„ෝ āļ¯ේ āļ‡āļ­. āļ´āļēි āļēāļąු āļšුāļ¸āļš්āļ¯, āļ‘āļē āˇƒොāļēාāļœāļ­් āļ†āļšාāļģāļē āˇƒāˇ„ āļ‘āļē āˇ€ැāļ¯āļœāļ­් āˇ€āļą්āļąේ āļ¸āļą්āļ¯ැāļēි āļ…āļ´ි āļ¯ැāļą් āˇƒොāļēා āļļāļŊāļ¸ු. `pi` āļēāļąු āļšුāļ¸āļš්āļ¯? " Probably no symbol in mathematics has evoked as much mystery, romanticism, misconception and human interest as the number pi " - William L. Schaaf - "āļœāļĢිāļ­āļēේ āļšිāˇƒිāļ¯ු āˇƒංāļšේāļ­āļēāļš් pi āˇƒංāļ›්‍āļēාāˇ€ āļ­āļģāļ¸් āļ…āļˇිāļģāˇ„āˇƒ්, āļģොāļ¸ාāļą්āļ­ිāļš, āˇ€ැāļģāļ¯ි āˇ€ැāļ§āˇ„ීāļ¸්  āˇƒāˇ„ āļ¸ාāļąāˇ€ āļ‹āļąāļą්āļ¯ුāˇ€ āļ‡āļ­ි āļšāļģ āļąැāļ­." -āˇ€ිāļŊිāļēāļ¸් āļ‘āļŊ්. āˇ‚ාāˇ†්- `pi` āļēāļąු āˇ€ෘāļ­්āļ­āļēāļš āļ´āļģිāļ°ිāļē āļ‘āˇ„ි āˇ€ිāˇ‚්āļšāļ¸්āļˇāļēāļ§ āļ‡āļ­ි āļ…āļąුāļ´ාāļ­āļēāļēි. āļ’ āļšිāļēāļą්āļąේ āļ”āļļ āļ•āļąෑāļ¸ āļšāˇ€āļēāļš් āˇ€āļ§ා āļ‡āļ­ි āļ¯ුāļģ āļ¸ැāļą āļ‘āļē āˇ„āļģāˇ„ා āļ‡āļ­ි āļ¯ුāļģිāļą් āļ‘āļē āļļෙāļ¯ුāˇ€āˇ„ොāļ­්, āļ”āļļāļ§ āˇƒෑāļ¸ āˇ€ිāļ§āļ¸ āļ‘āļšāļ¸ āļ…ංāļšāļē āļŊැāļļෙāļąු āļ‡āļ­: pi. `pi` āˇ„ි āļ…āļģ්āļŽ āļ¯ැāļš්āˇ€ීāļ¸ āļ´āļēි(Pi) āļēāļąු āļœāļĢිāļ­āļ¸āļē āļąිāļēāļ­āļēāļšි, āļ‘āļē āˇ€ෘāļ­්āļ­āļēāļš āļ´...

`\pi`: The Mysterious and Fascinating Number

 Happy `pi` day to everyone.🎉đŸĨŗ Today is March 14. Today called as Pi day. Because it is a day to celebrate the mathematical constant Ī€ (pi). The date written numerically as 3/14 matches the first three digits of this never-ending number: 3.14 In this article we find some interesting facts of `pi`. Today I want to talk about one of the most famous and fascinating numbers in mathematics: pi. You probably know pi as the number 3.14, but there is much more to it than that. Let me tell you what pi is, how it was discovered, and why it is important. What is `pi`? Probably no symbol in mathematics has evoked as much mystery, romanticism, misconception and human interest as the number pi - William L. Schaaf - `Pi` is the ratio of the circumference of a circle to its diameter. That means that if you measure the distance around any circle and divide it by the distance across it, you will always get the same number: pi. Definition of `pi` The Pi is a mathematical constant, which is ...