Skip to main content

Posts

Number sequence

What is the next number in this sequence? 1 - 2 - 4 - 6 - 10 - 12 - 16 - 18 - 22 - 28 - 30 - 36 - 40 - ? How did you find the solution? . . . . . . . . . . . . Show Answer Answer: 42 Let's Consider prime numbers. Prime numbers : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,47… Subtracting 1 from each prime number: 02 - 1 = 01 03 - 1 = 02 05 - 1 = 04 07 - 1 = 06 11 - 1 = 10 13 - 1 = 12 17 - 1 = 16 19 - 1 = 18 23 - 1 = 22 29 - 1 = 28 31 - 1 = 30 37 - 1 = 36 41 - 1 = 40 So, the next prime number after 41 is 43. Subtracting 1 from 43: [ 43 - 1 = 42 ] Therefore, the next number in the sequence is 42 .

⎃āļ­āļģ ⎀āļģ්āļĢ āļ´්‍āļģāļ¸ේāļēේāļē (Four Color Theorem)

⎃ිāļ­ිāļēāļ¸් āļ´ොāļ­āļš් āļœෙāļą āļļāļŊāļą්āļą. āļ‘⎄ි āļ‘āļš āļ‘āļš āļģāļ§āˇ€āļŊ් ⎀ි⎀ිāļ° āļģāļ§āˇ€āļŊ් ⎀ි⎀ිāļ° āˇ€āļģ්āļĢ⎀āļŊිāļą් ⎀āļģ්āļĢāļœāļą්⎀ා āļ‡āļ­ි āļ†āļšාāļģāļē āļļāļŊāļą්āļą. āļģāļ§āˇ€āļŊ් āļœāļĢāļą āˇ€ැāļŠි⎀ෙāļ¯්āļ¯ී ⎃ිāļ­ිāļēāļ¸āļš් ⎀āļģ්āļĢ āļœැāļą්⎀ීāļ¸āļ§ āļ’ āˇƒāļ¸ාāļą āˇ€āļģ්āļĢ āˇƒංāļ›්‍āļēා⎀āļš් āļ…⎀⎁්‍āļēāļ¯? āļ”āļļāļ§ āˇ€ි⎀ිāļ° āļ´්‍āļģāļ¯ේ⎁ āˇƒāˇ„ිāļ­ āˇƒිāļ­ිāļēāļ¸āļš් āļŊāļļා āļ¯ී āļ‡āļ­ි āļļ⎀ ⎃ිāļ­āļą්āļą. āļ´āˇ„āļ­ āļšොāļą්āļ¯ේ⎃ි āļ‰āļ§ු⎀āļą āļ´āļģිāļ¯ි ⎃ිāļ­ිāļēāļ¸āļš් ⎀āļģ්āļĢ āļœැāļą්⎀ිāļ¸āļ§ āļ”āļļāļ§ āˇ€āļģ්āļĢ āļšිāļēāļš් āļ…⎀⎁්‍āļēāļ¯? āļ’āļš āļŊāļš්⎂ිāļ­ āļ¯ේ⎁⎃ීāļ¸ා⎀āļš් āļąැāļ­ි āļģāļ§āˇ€āļŊ් āļ¯ෙāļšāļš් āļ…āļąි⎀ාāļģ්āļēෙāļą්āļ¸ āˇ€āļģ්āļĢ āļ¯ෙāļšāļšිāļą් āļ´ාāļ§ āļšāļŊ āļēුāļ­ු⎀ේ.  āļ¯ෙ⎀āļą āļšොāļą්āļ¯ේ⎃ිāļē āļģāļ§āˇ€āļŊ් āļ¯ෙāļšāļš් ⎄āļ¸ු⎀āļą්āļąේ āļ‘āļšāļ¸ āļŊāļš්⎂āļēāļšāļ¯ී āļąāļ¸් āļ‘āļ¸ āļģāļ§āˇ€āļŊ් āļ¯ෙāļšāļ§āļ¸ āļ‘āļšāļ¸ āˇ€āļģ්āļĢāļēේ āļēෙāļ¯ිāļē ⎄ැāļš. āļģූāļ´āļē 1: āļ¸ෙāļē ⎀āļŊංāļœු āļąො⎀ේ āļģූāļ´āļē 1 āļ‡āļ­ි āļ†āļšාāļģāļēāļ§ āˇ€āļģ්āļĢ āļœැāļą්⎀ිāļē āļąො⎄ැāļš. āļ‘āļ¸ āļąි⎃ා āļģූāļ´āļē 2 āļ†āļšාāļģāļēāļ§ āˇ€āļģ්āļĢ āļœැāļą්⎀ිāļē ⎄ැāļš. āļģූāļ´āļē 2: āļ¸ෙāļē ⎀āļŊංāļœු ⎀āļģ්āļĢ āļœැāļą්⎀ිāļ¸āļšි. āļ…āļ´āļœේ āļœැāļ§āļŊු⎀āļ§ āˇ€ි⎃āļŗුāļ¸ āˇƒෙ⎀ිāļ¸āļ§ āļ´āļ§āļą් āļœāļ¸ු. āļ‘āļē ⎃āļģāļŊ āļģූāļ´āļēāļšිāļą් āļ´āļ§āļą් āļœāļ¸ු. āļ´āˇ„āļ­ āļģූāļ´āļē āļ‰āˇ„āļ­ āļšොāļą්āļ¯ේ⎃ි ⎀āļŊāļ§ āļ…āļ¯ාāļŊ⎀ ⎀āļģ්āļĢ āļœැāļą්⎀ිāļ¸āļ§ āļ”āļļāļ§ āˇ€āļģ්āļĢ āļšිāļēāļš් āļ…⎀⎁්‍āļēāļ¯? āļģූāļ´āļē 3 Show Answer Answer: ⎀āļģ්āļĢ 4   āļģූāļ´āļē 4 ⎃āļ­āļģ āˇ€āļģ්āļĢ āļœැāļ§āļŊු⎀ āļ¸ූāļŊාāļģāļ¸්āļˇāļē 19 ⎀ැāļąි ⎃ිāļēāˇ€āˇƒේ āļ¸ැāļ¯ āļˇාāļœāļē āļ¯āļš්⎀ා āļ¯ි⎀ āļēāļēි.  ⎆්‍āļģැāļą්⎃ි⎃් āļœුāļ­්‍āļģි āļąāļ¸් āļļ්‍āļģිāļ­ාāļą්‍āļē āļĸāļ­ිāļšāļēා āļ‘ංāļœāļŊāļą්āļ­ āˇƒිāļ­ිāļēāļ¸ේ āļ´්‍āļģාāļą්āļ­ āˇ€āļģ්āļĢ āļœāļą්⎀āļ¯්āļ¯ි āļ¯ුāļ§ු⎀ේ ⎃ිāļēāļŊුāļ¸ āļ´්‍āļģාāļą්āļ­ āˇƒිāļ­ිāļēāļ¸ āˇ€āļģ්āļĢ āļœ...

āļœāļĢිāļ­āļ¸āļē ⎄ා⎃්‍āļēāļē 😆😂

  āļ†āļēුāļļෝ⎀āļą් ⎄ැāļ¸ෝāļ§āļ¸,āļ¸āļœේ āļļ්āļŊොāļœ් āļ…āļŠāˇ€ිāļēāļ§ āˇƒාāļ¯āļģāļēෙāļą් āļ´ි⎅ිāļœāļąිāļ¸ු. āļ…āļ¯ āļ¸āļ¸ āļ”āļļ ⎃āļ¸āļŸ āļļෙāļ¯ාāļœāļą්āļąāļ§ āļ…āļ¯āˇ„āˇƒ් āļšāļģāļą්āļąේ āļœāļĢිāļ­āļĨāļēෙāļšු ⎀āļą āļ¸ිāļ­ුāļģෙāļšුāļœෙāļą් āļ¸ා āļ…āˇƒා āļ‡āļ­ි ⎀ි⎄ි⎅ු⎀āļš්. āļ‘āļē āļ¸ෙ⎃ේ āļēāļēි. "āļĸී⎀ ⎀ිāļ¯්‍āļēාāļĨāļēෙāļš්, āļ‰ංāļĸිāļąේāļģු⎀ෙāļš් āˇƒāˇ„ āļœāļĢිāļ­āļĨāļēෙāļš් ⎄ි⎃් āļąිāˇ€āˇƒāļš් āļļāļŊාāļœෙāļą āļ‰āļą්āļąāˇ€ා. āļ¯ෙāļą්āļąෙāļš් āļ‡āļ­ුāļŊāļ§ āļēāļąāˇ€ා, āļ§ිāļš āˇ€ෙāļŊා⎀āļšිāļą් āļ­ුāļą්āļ¯ෙāļąෙāļš් āļ‘āļŊිāļēāļ§ āļēāļąāˇ€ා.  āļĸී⎀ ⎀ිāļ¯්‍āļēාāļĨāļēා āļšිāļēāļąāˇ€ා: "āļ”⎀ුāļą් āļ´්‍āļģāļĸāļąāļąāļē āļšāļģāļą්āļą āļ‡āļ­ි."  āļ‰ංāļĸිāļąේāļģු⎀ා āļšිāļēāļąāˇ€ා: "āļ…āļ´ේ āļ‹āļ´āļšāļŊ්āļ´āļą āˇ€ැāļģāļ¯ි ⎀ෙāļą්āļą āļ‡āļ­ි." āļœāļĢිāļ­āļĨāļēා āļ´āˇ€āˇƒāļą්āļąේ: "āļēāļ¸ෙāļš් āļąිāˇ€āˇƒ āļ­ු⎅āļ§ āļœිāļē⎄ොāļ­් āļ‘āļē āļąැ⎀āļ­ āˇ„ි⎃් ⎀āļąු āļ‡āļ­." āļ¸ෙāļ¸ āˇ€ි⎄ි⎅ු⎀ ⎄ා⎃්‍āļēāļĸāļąāļš āˇ€āļą්āļąේ āļ‘āļē ⎀ි⎀ිāļ° āˇ€ෘāļ­්āļ­ීāļą් ⎃ිāļ­āļą āˇƒāˇ„ āļœැāļ§āˇ…ු ⎀āļŊāļ§ āļ‘⎅āļšෙāļą āˇ€ි⎀ිāļ° āļ†āļšාāļģ⎀āļŊිāļą් āļš්‍āļģීāļŠා āļšāļģāļą āļļැ⎀ිāļąි. āļĸී⎀ ⎀ිāļ¯්‍āļēාāļĨāļēා ⎃ිāļ­āļą්āļąේ āļ´්‍āļģāļĸāļąāļąāļē ⎀ැāļąි āļĸී⎀ ⎀ිāļ¯්‍āļēාāļ­්āļ¸āļš āļš්‍āļģිāļēා⎀āļŊීāļą් āļ…āļąු⎀ āļē. āļ‰ංāļĸිāļąේāļģු⎀āļģāļēා ⎀ැāļģāļ¯ි āļąි⎀ැāļģāļ¯ි āļšිāļģීāļ¸ āˇ€ැāļąි āļ­ාāļģ්āļšිāļš āˇƒāˇ„ āļ´්‍āļģාāļēෝāļœිāļš āˇ€ි⎃āļŗුāļ¸් āļ…āļąු⎀ ⎃ිāļ­āļēි. āļœāļĢිāļ­āļĨāļēා ⎃ිāļ­āļą්āļąේ ⎃ෘāļĢ āˇƒංāļ›්‍āļēා ⎀ැāļąි ⎀ිāļēුāļš්āļ­ āˇƒāˇ„ āļą්‍āļēාāļēිāļš āˇƒංāļšāļŊ්āļ´ āļ…āļąු⎀ āļē. āļœāļĢිāļ­āļĨāļēා āļœāļĢāļąāļē āļšāˇ…ේ āļ¸ෙāļēāļēි āļ´ුāļ¯්āļœāļŊāļēāļą් 2 āļ¯ෙāļąෙāļš් āļąිāˇ€āˇƒ āļ­ු⎅āļ§ āļēāļąāˇ€ා `(2+0 = 2)` 3 āļ¯ෙāļąෙāļš් āļ‘⎅ිāļēāļ§ āļ‘āļąāˇ€ා `(2-3 = -1)` 1 āļ´ුāļ¯්āļœāļŊāļēෙāļš් `(-1+1 = 0)` āļ­ු⎅ āļēāļēි āļ‘āļļැ⎀ිāļą් āļ‘āļē āļąැ⎀āļ­ āˇ„ි⎃් ⎀ේ āļ”āļļ āļ¸ෙāļ¸ āˇ€ි⎄ි⎅ු⎀ āļģāˇƒāˇ€ිāļŗිāļą āļ…āļ­āļģ ...

Understanding Humor through the Lens of Mathematics😆😂

Hi everyone, welcome to my blog. Today, I want to share with you a joke that I heard from a friend who is a mathematician. It goes like this: "A biologist, an engineer, and a mathematician are watching an empty house. Two people walk in and a while later, three people walk out. The biologist says: “They must have reproduced.” The engineer says: “Our assumptions must have been wrong.” The mathematician says: "If someone walks into the house, it will be empty again." This joke is funny because it plays on the different ways that different professions think and approach problems. The biologist thinks in terms of biological processes, such as reproduction. The engineer thinks in terms of logical and practical solutions, such as correcting errors. The mathematician thinks in terms of abstract and theoretical concepts, such as negative numbers. Still you can not understand the joke please tap/click this button. Explanation This is what the mathematician calculated 2 pe...

Hilbert Hotel

Have you ever wondered what would happen if you had an infinitely large hotel with infinitely many rooms, and you wanted to accommodate infinitely many guests? This is the scenario that mathematician David Hilbert imagined in 1924, and it leads to some surprising and paradoxical results. In this blog post, I will explain the concept of Hilbert's hotel and some of the implications of infinity for mathematics and logic. I will also show you how to use some simple rules to manipulate infinite sets and perform seemingly impossible tasks. Hilbert's hotel is a thought experiment that illustrates the properties of infinite sets. A set is a collection of distinct objects, such as numbers, letters, or people. A set is finite if it has a fixed number of elements, and infinite if it does not. For example, the set of natural numbers {1, 2, 3, ...} is infinite, because there is no largest natural number. An infinite set can be either countable or uncountable. A countable set is one that can...

The Mathematics of ISBN Number

If you have ever bought a book, you might have noticed a barcode and a number on its back cover. This number is called the International Standard Book Number (ISBN) and it is used to uniquely identify a book and its publisher. ISBNs are also useful for libraries, booksellers, distributors and readers who want to find or order a specific book. But did you know that ISBNs are not just random numbers? They are actually based on a mathematical formula that allows them to detect errors and prevent confusion. In this blog post, we will explore how ISBNs work and what kind of mathematics they use.  What is an ISBN? An ISBN is a numeric commercial book identifier that is intended to be unique. Publishers purchase or receive ISBNs from an affiliate of the International ISBN Agency. An ISBN is assigned to each separate edition and variation (except reprintings) of a publication. For example, an e-book, a paperback and a hardcover edition of the same book will each have a different ISBN....

Millennium Problems

The millennium Mathematics problems are a set of seven challenging and important questions that have been posed by the Clay Mathematics Institute (CMI) in 2000. The CMI has offered a prize of one million US dollars for each problem that is solved by a mathematician. The problems cover various areas of mathematics, such as number theory, algebraic geometry, topology, analysis, and computer science. In this blog post, we will give a brief overview of each problem and why they are interesting and relevant for mathematics and beyond. The first problem is the Birch and Swinnerton-Dyer conjecture , which deals with elliptic curves. These are curves defined by cubic equations in two variables, and they have many applications in cryptography, factorization, and the proof of Fermat's last theorem. The conjecture relates the number of rational solutions of an elliptic curve to a special function called the L-function. The conjecture has been verified for many examples, but a general proof is...

Millennium Problem Sinhala

āˇƒāˇ„āˇƒ්‍āļģ āļœැāļ§āļŊු(Millennium Problems) āļēāļąු 2000 āļ¯ී Clay Mathematics Institute (CMI) ⎀ි⎃ිāļą් āļ‰āļ¯ිāļģිāļ´āļ­් āļšāļģāļą āļŊāļ¯ āļ…āļˇිāļēෝāļœාāļ­්āļ¸āļš āˇƒāˇ„ ⎀ැāļ¯āļœāļ­් āļ´්‍āļģ⎁්āļą āˇ„āļ­āļš āļ‘āļšāļ­ු⎀āļšි. CMI ⎀ි⎃ිāļą් āļœāļĢිāļ­āļĨāļēāļšු ⎀ි⎃ිāļą් ⎀ි⎃āļŗāļą āˇƒෑāļ¸ āļœැāļ§āļŊු⎀āļš් ⎃āļŗāˇ„ාāļ¸ āļ‡āļ¸ෙāļģිāļšාāļąු āļŠොāļŊāļģ් āļ¸ිāļŊිāļēāļąāļēāļš āļ­්‍āļēාāļœāļēāļš් āļ´ිāļģිāļąāļ¸ා āļ‡āļ­. āļœැāļ§āˇ…ු ⎃ංāļ›්‍āļēා āļą්‍āļēාāļē(Number Theroy), ⎀ීāļĸීāļē āļĸ්‍āļēාāļ¸ිāļ­ිāļē (Algebraic Geometry), ⎃්āļŽāļŊ ⎀ිāļ¯්‍āļēා⎀(Topology), ⎀ි⎁්āļŊේ⎂āļĢāļē (Analysis) āˇƒāˇ„ āļ´āļģිāļœāļĢāļš āˇ€ිāļ¯්‍āļēා⎀(Computer Science) ⎀ැāļąි āļœāļĢිāļ­āļēේ ⎀ි⎀ිāļ° āļš්⎂ේāļ­්‍āļģ āļ†āˇ€āļģāļĢāļē āļšāļģāļēි. āļ¸ෙāļ¸ āļļ්āļŊොāļœ් ⎃āļ§āˇ„āļąේāļ¯ී, āļ…āļ´ි āļ‘āļš් āļ‘āļš් āļœැāļ§āˇ…ු āļ´ි⎅ිāļļāļŗ āļšෙāļ§ි āļ¯āˇ… ⎀ි⎁්āļŊේ⎂āļĢāļēāļš් āˇƒāˇ„ āļ’⎀ා āļœāļĢිāļ­āļēāļ§ āˇƒāˇ„ āļ‰āļą් āļ”āļļ්āļļāļ§ āˇƒිāļ­්āļœāļą්āļąා⎃ු⎅ු āˇƒāˇ„ āļ…āļ¯ා⎅ ⎀āļą්āļąේ āļ¸āļą්āļ¯ැāļēි āļ¯ෙāļą්āļąෙāļ¸ු. āļ´āˇ…āļ¸ු āļœැāļ§āˇ…ු⎀ ⎀āļą්āļąේ āļ‰āļŊිāļ´්⎃ීāļē ⎀āļš්‍āļģ(Elliptic Curve) ⎃āļ¸āļŸ āļšāļ§āļēුāļ­ු āļšāļģāļą Birch āˇƒāˇ„ Swinnerton-Dyer āļ…āļąුāļ¸ාāļąāļēāļēි ( Birch and Swinnerton-Dyer conjecture ). āļ¸ේ⎀ා ⎀ිāļ āļŊ්‍āļē āļ¯ෙāļšāļšිāļą් āļāļąāļĸ ⎃āļ¸ීāļšāļģāļĢ āļ¸āļœිāļą් āļąිāļģ්⎀āļ āļąāļē āļšāļģāļą āļŊāļ¯ āˇ€āļš්‍āļģ ⎀āļą āļ…āļ­āļģ āļ’⎀ාāļ§ āļœුāļ´්āļ­ āˇ€ිāļ¯්‍āļēා⎀(Cryptography), ⎃ාāļ°āļšāļšāļģāļĢāļē(factorization) āˇƒāˇ„ ⎆āļģ්āļ¸ැāļ§්āļœේ āļ…āˇ€āˇƒාāļą āļ´්‍āļģāļ¸ේāļēāļē ⎃āļąාāļŽ āļšිāļģීāļ¸ේ āļļො⎄ෝ āļēෙāļ¯ුāļ¸් āļ‡āļ­. āļ…āļąුāļ¸ාāļąāļē āļ¸āļœිāļą් āļ‰āļŊිāļ´්⎃ීāļē ⎀āļš්‍āļģāļēāļš āļ­ාāļģ්āļšිāļš āˇ€ි⎃āļŗුāļ¸් āļœāļĢāļą L-⎁්‍āļģිāļ­āļē(L-functions) āļąāļ¸් ⎀ි⎁ේ⎂ ⎁්‍āļģ...

āļ†āļģāļš්⎂ිāļ­ āļ´ැāļšේāļĸāļēđŸ“Ļ

āļ†āļēුāļļෝ⎀āļą්, ⎄ිāļ­āˇ€āļ­් āļ´ාāļ¨āļšāļēිāļą්! āļ¸āļœේ āļļ්āļŊොāļœāļē ⎀ෙāļ­ āļąැ⎀āļ­ āˇƒාāļ¯āļģāļēෙāļą් āļ´ි⎅ිāļœāļąිāļ¸ු, āļ‘⎄ිāļ¯ී āļ¸āļ§ āˇ„āļ¸ු⎀āļą āˇ€āļŠාāļ­් āļģāˇƒāˇ€āļ­් ⎄ා āļ…āļˇිāļēෝāļœාāļ­්āļ¸āļš āļ´්‍āļģ⎄ේāļŊිāļšා āļšි⎄ිāļ´āļēāļš් āļ¸āļ¸ āļ”āļļ ⎃āļ¸āļŸ āļļෙāļ¯ා āļœāļąිāļ¸ි. āļ…āļ¯, āļ¸āļ¸ āļ”āļļ ⎀ෙāļąු⎀ෙāļą් āļ‰āļ­ා āļ†āļ¯āļģ āļ´්‍āļģ⎄ේāļŊිāļšා⎀āļš් āļ‡āļ­, āļ¸ුāļ¯්āļ¯āļš්, āļ…āļœු⎅ු āļ´ෙāļ§්āļ§ිāļēāļš් āˇƒāˇ„ āļ…āļœුāļŊු āļšි⎄ිāļ´āļēāļš් āļ‡āļ­ු⎅āļ­් ⎀ේ. āļšුāļ­ු⎄āļŊāļē āļ¯āļąāˇ€āļą āļ¯ෙāļēāļš් ⎀āļœේ āļąේāļ¯? āļ¸āļ¸ āļšāļ­ා⎀ āļšිāļēāļą්āļąāļ¸්. āļ´āˇ…āļ¸ු⎀āļą āļŊෝāļš āˇƒංāļœ්‍āļģාāļ¸āļēේāļ¯ී āļģු⎃ිāļēාāļąු āļ­ැāļ´ැāļŊ් ⎃ේ⎀āļē āļ´ාāļģ්⎃āļŊ්  ⎀ි⎀ෘāļ­ āļšිāļģීāļ¸ āˇƒāˇ„ ⎀āļ§ිāļąා āļˇාāļĢ්āļŠ āˇƒොāļģāļšāļ¸් āļšිāļģීāļ¸ āˇƒāļ¸්āļļāļą්āļ°āļēෙāļą් āļ…āļ´āļšීāļģ්āļ­ිāļēāļš් āļ¯āļģා ⎃ිāļ§ිāļēේāļē.  āļ¸ෙāļ¸ āļšුāļ´්‍āļģāļšāļ§ āļ­ැāļ´ැāļŊ් ⎃ේ⎀ා⎀   āļˇා⎀ිāļ­ා āļšāļģ āļ”āļļේ āļ†āļ¯āļģāļĢීāļēāļēාāļ§ āļ¸ුāļ¯්āļ¯āļš් āļēැ⎀ීāļ¸āļ§ āļ”āļļāļ§ āļ…⎀⎁්‍āļē āļēැāļēි ⎃ිāļ­āļą්āļą. āļ¸ුāļ¯්āļ¯ āļ†āļģāļš්⎂ිāļ­āˇ€ āļ´ැāļ¸ිāļĢීāļ¸ āˇƒāˇ„āļ­ිāļš āļšිāļģීāļ¸ āˇƒāļŗāˇ„ා āļ‘āļē āļ…āļœු⎅ු ⎃āļŗāˇ„ා ⎃ිāļ¯ුāļģු āļ´āˇ„āļš් āļ‡āļ­ි āļ¯āļšුāļĢු āļ´āˇƒිāļą් āļ´ෙāļą්⎀ා āļ‡āļ­ි āļ…āļœු⎅ු āļ´ෙāļ§්āļ§ිāļēāļš āļēැ⎀ිāļē āļēුāļ­ුāļē. (āļ•āļąෑāļ¸ āˇƒිāļ¯ුāļģු āļ´āˇ„āļš āļ…āļœුāļŊāļš් āļ´ෙāļ§්āļ§ිāļē āļ†āļģāļš්⎂ිāļ­āˇ€ āļ…āļœු⎅ු āļ¯āļ¸āļēි.)  āļ”āļļāļ§ āˇƒāˇ„ āļ”āļļේ āļ†āļ¯āļģāļĢීāļēāļēාāļ§ āļ…āļœුāļŊ් āļ´āˇ„ āļļැāļœිāļą් āļ‡āļ­. āļ”āļļāļ§ āļ”āļļේāļ¸ āļ…āļœුāļŊු ⎃āļŗāˇ„ා āļēāļ­ුāļģු āļ¯ āļ‡āļ­, āļąāļ¸ුāļ­් āļ”āļļ āļ‘āļšිāļąෙāļšාāļœේ āļ…āļœුāļŊු ⎃āļŗāˇ„ා āļēāļ­ුāļģු āļąොāļ¸ැāļ­. āļ”āļļāļ§ āļ­ැāļ´ැāļŊ් āļœා⎃්āļ­ු⎀ ⎃āļŗāˇ„ා āļ…āˇƒීāļ¸ිāļ­ āļ¸ුāļ¯āļŊāļš් āļ­ිāļļේ āļąāļ¸්, āļ”āļļේ āļ†āļ¯āļģāļĢීāļē āļ¸ුāļ¯්āļ¯ āļēැ⎀ීāļ¸āļ§ āļ”āļļāļ§ āˇ„ැāļš්āļšේ āļšෙ⎃ේāļ¯? āļ¸ෙāļ¸ āļ´්‍āļģ⎄ේāļŊිāļšා⎀ Safe Package Problem āļŊෙ⎃ ⎄āļŗුāļą්⎀āļąු āļŊāļļāļą āļ…āļ­āļģ, āļ‘āļē āļœුāļ´්āļ­āļšේāļ­āļąāļē (C...

Safe Package Problem đŸ“Ļ

Hello, dear readers! Welcome back to my blog, where I share with you some of the most interesting and challenging puzzles I come across. Today, I have a very romantic puzzle for you, involving a ring, a lock box, and some padlocks. Sounds intriguing, right? Let me tell you the story. Imagine you want to send your beloved a ring using a mail service that is notorious for opening packages and stealing valuables. To ensure the ring arrives safely it must be sent in a lock box, such as the one shown on the right, which has five holes for padlocks. (A padlock in any of the five holes will lock the box securely.) You and your beloved have five padlocks each. You also have the keys for your own padlocks, but you don’t have the keys for each other’s padlocks.  If you have unlimited money for postage, how are you able to send your beloved the ring? This puzzle is called the SAFE PACKAGE Problem, and it is a classic example of a logic puzzle involving cryptography. Cryptography is the scienc...

āļ¯ෙāļœුāļĢ⎀āļą āļ¸ාāļąෙāļŊ් āļ´ැāļŊāļē

āļ†āļēුāļļෝ⎀āļą්, ⎄ිāļ­āˇ€āļ­් āļ´ාāļ¨āļšāļēිāļą්! āļ…āļ¯ āļ¸āļ§ āļ”āļļ ⎃āļ¸āļŸ āˇ€ිāļąෝāļ¯āļĸāļąāļš āˇƒāˇ„ āļ´āˇ„āˇƒු āļ´්‍āļģ⎄ේāļŊිāļšා⎀āļš් āļļෙāļ¯ා āļœැāļąීāļ¸āļ§ āļ…⎀⎁්‍āļēāļēි. āļąāļ¸ුāļ­් āļļ⎄ුāļ­āļģāļē ⎀ැāļģāļ¯ි āļ´ි⎅ිāļ­ුāļģāļš් āļ¯ෙāļąු āļ‡āļ­. ⎀ිāļŊāļš āļ¸ාāļąෙāļŊ් āļ¸āļŊ් āļ´ැāļŊ āļšි⎄ිāļ´āļēāļš් āļ‡āļ­. ⎃ෑāļ¸ āļ¯ිāļąāļšāļ¸, āļ‘āļē āļ´්‍āļģāļ¸ාāļĢāļē āļ¯ෙāļœුāļĢ āˇ€ෙāļēි. ⎃āļ¸්āļ´ූāļģ්āļĢ āˇ€ිāļŊ  ⎀ැ⎃ීāļ¸āļ§ āļ¯ිāļą 50āļš් āļœāļ­ āˇ€āļą්āļąේ āļąāļ¸්, āļ¸ාāļąෙāļŊ් āļ´ැāļŊ ⎀āļŊිāļą්, ⎀ිāļŊෙāļą් āļ…āļŠāļš් ⎀ැ⎃ීāļ¸āļ§ āļšොāļ´āļ¸āļĢ āļšාāļŊāļēāļš් āļœāļ­āˇ€ේāļ¯? . . . . . . . . . . . . Hint āļ‰āļŸිāļē āļ´ි⎅ිāļ­ුāļģ āļ¯ිāļą 25 āļš් āļēැāļēි āļ”āļļ ⎃ිāļ­āļąු āļ‡āļ­, āļąāļ¸ුāļ­් āļ‘āļē ⎀ැāļģāļ¯ිāļēි. āļ¸ෙāļē ⎀ි⎃āļŗිāļ¸āļ§ āļ‡āļ­ි āļ‹āļ´āļš්‍āļģāļ¸āļē ⎀āļą්āļąේ āļ…āˇ€āˇƒාāļąāļēේ ⎃ිāļ§ āļ´āˇƒුāļ´āˇƒāļ§ āˇ€ැāļŠ āļšිāļģීāļ¸āļēි. Show Answer āļ´ි⎅ිāļ­ුāļģ: āļ¸ෙāļē āļාāļ­ීāļē ⎀āļģ්āļ°āļą āļœැāļ§āļŊු⎀āļš āˇƒāļ¸්āļˇා⎀්‍āļē āļ‹āļ¯ා⎄āļģāļĢāļēāļšි.  āļ¸ාāļąෙāļŊ් āļ´ැāļŊ   āļ¯āˇ€āˇƒ් 50 āļšිāļą් āļ¸ු⎅ු ⎀ිāļŊāļ¸ āļ†āˇ€āļģāļĢāļē āļšāļģāļąāˇ€ා āļąāļ¸්, āļ‘āļē āļ¯ිāļą  49  āˇ€āļą āˇ€ිāļ§ āˇ€ැ⎀ෙāļą් āļ…āļŠāļš් āļ†āˇ€āļģāļĢāļē āļšāļģāļēි. āļ’ āļ¸āļą්āļ¯ āļēāļ­් 49 ⎀āļą āļ¯ිāļą āļ‘āļē āļ…āļŠāļšිāļą් āļ´ිāļģී āļēāļą āļļැ⎀ිāļąි. āļ‘āļļැ⎀ිāļą් āļ´ි⎅ිāļ­ුāļģ āļ¯ිāļą 49 āļšි. ⎄āļģි ⎃āļģāļŊāļēි āļąේāļ¯? āļąāļ¸ුāļ­් āļ‰āļą්āļą, āļ­āˇ€ āļ­ිāļēෙāļąāˇ€ා! ⎃ොāļ¸්āļļි āļˇී⎁āļĢāļēāļšāļ§ āˇƒිāļēāļŊුāļ¸ āļ¸ිāļąි⎃ුāļą් āļ…āļ­ුāļœා āļ¯ැāļ¸ීāļ¸āļ§ āļšොāļ´āļ¸āļĢ āļšාāļŊāļēāļš් āļœāļ­āˇ€ේāļ¯ āļēāļą්āļą āļ­āļš්⎃ේāļģු āļšිāļģීāļ¸āļ§ āļ”āļļāļ§ āļ¸ෙāļ¸ āļœැāļ§āļŊු⎀ āļˇා⎀ිāļ­ා āļšāˇ… ⎄ැāļšි āļļ⎀ āļ¸āļ¸ āļ”āļļāļ§ āļ´ැāˇ€āˇƒු⎀⎄ොāļ­් ? āļ”⎀්, āļ”āļēාāļ§ āļ¸ා⎀ āļ‡āˇ„ුāļąා ⎄āļģි. ⎃ොāļ¸්āļļි āļ¸ාāļąෙāļŊ් āļ´ැāļŊ ⎀āļœේ, āļ”⎀ුāļą් āļාāļ­ීāļē āļŊෙ⎃ āļœුāļĢ āˇ€ේ. āļ…āļ´ි ⎄ිāļ­āļ¸...

The size-double lily pad patch Riddle

Hello, dear readers! Today I want to share with you a fun and easy riddle. But majority will  give wrong answer. In a lake, there is a patch of lily pads. Every day, the patch doubles in size. If it takes 50 days to cover the entire lake, how long does it take for the patch to cover half of the lake?  . . . . . . . . . . . . Hint  You might think that the answer is 25 days, but that's wrong.   The trick is to work backwards from the end.  Show Answer Answer: This is a classic example of an exponential growth problem. If the patch covers the entire lake on day50, then it covers half of the lake on day  49 . That's because on day 50, it doubles from half to full. So the answer is  49  days. Pretty simple, right? But wait, there's more! What if I told you that you can use this problem to estimate how long it would take for a zombie apocalypse to wipe out humanity? Yes, you heard me right. Zombies are like lily pads, they multiply exp...

Playful Mathematician

In the late 1700s, there was a very mischievous boy in a German elementary school. He was always a playful child. Once he was given to add from 1 to 100 as a punishment for a defiant (wrong) act he did. ,This is a very difficult problem for a child in the primary section. But this kid solves the problem in seconds, much to the teacher's surprise. How did he do it? He solved it by rearranging the terms from 1 to 100 as follows. `001+101=101` `002+099=101` `003+098=101` :         :         : .         .         . `049+052=101` `050+051=101` He realized that there are 50 such pairs, each adding up to 101. So, the sum of all the numbers from 1 to 100 is 101 times 50, which is 5050. He wrote this answer on his board and gave it to the teacher. By rearranging the terms in this way, the answer can be obtained very quickly and easily. Using this method, the formula for units of the qualitative s...

⎃ෙāļŊ්āļŊāļš්āļšාāļģ āļœāļĢāļą්āļšාāļģāļēා (Playful Mathematician)

āˇ€āˇƒāļģ1700 āļēේ āļ…āļœ āļˇාāļœāļēේāļ¯ී, āļĸāļģ්āļ¸ාāļąු āļ´්‍āļģාāļŽāļ¸ිāļš āļ´ා⎃āļŊāļš āļ‰āļ­ා āļ¯āļŸāļšාāļģ āļšොāļŊු āļœැāļ§āļēෙāļšු ⎀ිāļē. āļ¸ො⎄ු āļąිāļ­āļģāļ¸ āˇƒෙāļŊ්āļŊāļ¸āļ§ āļļāļģ āļŊāļ¸āļēෙāļšු ⎀ිāļē.  ⎀āļģāļš් āļ”⎄ු āļšāļŊ āļąො⎄ොāļļිāļąා (⎀ැāļģāļ¯ි)  āļšිāļģ්‍āļēා⎀āļš් āļąි⎃ා āļ”⎄ුāļ§ āļ¯āļŠු⎀āļš් āļŊෙ⎃ āļ”⎄ුāļ§ 1 ⎃ිāļ§ 100 āļ¯āļš්⎀ා āļ‘āļšāļ­ු āļšිāļģීāļ¸āļ§ āļ¯ෙāļą āļŊāļ¯ී. ,āļ¸ෙāļē āļ´්‍āļģාāļŽāļ¸ිāļš āļ…ං⎁āļēේ ⎅āļ¸āļēෙāļšුāļ§ āļ‰āļ­ාāļ¸āļ­් āļ…āˇƒීāļģු āļœැāļ§āļŊු⎀āļšි. āļąāļ¸ුāļ­් āļ¸ෙāļ¸ āļŊāļ¸āļēා āļ­āļ­්āļ´āļģ āļœāļĢāļąāļšිāļą් āļ¸ෙāļ¸ āļœැāļ§āļŊු⎀ ⎀ි⎃‍āļŗු ⎀ේ, āļœුāļģු⎀āļģāļēා āļ¸āˇ„āļ­් āļ´ුāļ¯ුāļ¸āļēāļ§ āļ´āļ­් āļšāļģāļ¸ිāļąි.   āļ”⎄ු āļšො⎄ොāļ¸āļ¯ āļ’āļš āļšāļŊේ?  āļ”⎄ු āļ‘āļē ⎀ි⎃āļŗු⎀ේ āļ´āˇ„āļ­ āļ†āļšාāļģāļēāļ§ 1 ⎃ිāļ§ 100āļ§ āļ´āļ¯ āļąැ⎀āļ­ āˇƒāļšāˇƒ් āļšිāļģිāļ¸ෙāļąි. `1+101=101` `2+99=101` `3+98=101` :      :      : .      .      . `49+52=101` `50+51=101` āļ‘⎀ැāļąි āļēුāļœāļŊ 50 āļš් āļ‡āļ­ි āļļ⎀ āļ”⎄ුāļ§ āˇ€ැāļ§āˇ„ුāļĢි, āļ’ āˇƒෑāļ¸ āļ‘āļšāļš්āļ¸ 101 āļ¯āļš්⎀ා āļ‘āļšāļ­ු āļšāļģāļēි. āļ‘āļļැ⎀ිāļą්, 1 ⎃ිāļ§ 100 āļ¯āļš්⎀ා ⎀ූ ⎃ිāļēāļŊුāļ¸ āˇƒංāļ›්‍āļēා ⎀āļŊ āļ‘āļšāļ­ු⎀ 101 āļœුāļĢāļēāļšිāļą් 50 āļš් ⎀āļą āļ…āļ­āļģ āļ‘āļē 5050 āļšි.  āļ”⎄ු āļ¸ෙāļ¸ āļ´ි⎅ිāļ­ුāļģ āļ­āļ¸ āļ´ු⎀āļģු⎀ේ āļŊිāļēා āļœුāļģු⎀āļģāļēාāļ§ āļ¯ුāļą්āļąේāļē. āļ¸ේ āļ†āļšාāļģāļēāļ§ āļ´āļ¯ āļąැ⎀āļ­ āˇƒāļšāˇƒ් āļšිāļģීāļ¸ෙāļą් āļ‰āļ­ා āļ‰āļš්āļ¸āļąිāļą් āļ´āˇ„āˇƒු⎀ෙāļą්  āļ´ිāļŊිāļ­ුāļģ āļŊāļļා āļœāļ­ āˇ„ැāļš.  āļ¸ෙāļ¸ āļš්‍āļģāļ¸āļē āļˇා⎀ිāļ­āļēෙāļą්  āļ…āļ¯ āˇ€āļą āˇ€ිāļ§ āļˇා⎀ිāļ­ා āļšāļģāļą āļœුāļąෝāļ­්āļ­āļģ ⎁්‍āļģේāļĢි ⎀āļŊ āļ’āļš්‍āļē ⎃āļŗāˇ„ා  ⎃ූāļ­්...